[image: image1.png]descrptions
head

D
forename
vear
tutor_group

Guide to Relational Databases and Microsoft Access
by

Andrew Virnuls

Contents

4Database Structure

Fields, Records and Tables
4
Field Types
4
Key Field/Unique Key
4
Indexes
5
Validation
5
Type
5
Presence
5
Uniqueness
5
Range
5
Format
5
Multiple Choice
5
Referential Integrity
6
Relational Databases
6
Data Redundancy & Inconsistency
6
Multiple Tables
6
Degree of Relationship
7
Searching (or Queries)
7
Referential Integrity
8
Normalisation
8
First Normal Form
8
Second Normal Form
8
Third Normal Form
9
Normalisation in Projects
9
The Normalisation Oath
9
Access
9
Fields
9
Field Types
9
Naming Fields
10
Indexes
10
Other Options
10
Relationships
11
Referential Integrity
11
Queries
11
Counting, Totals, etc.
12
Derived Values
12
Update and Delete Queries
12
Forms
12
Form Properties
13
Choosing Controls
13
Combo Boxes
13
Sorting and Grouping Combo Boxes
14
List Boxes
14
Input Masks
14
Enabling, Disabling and Hiding Controls
15
Tab Order
15
Startup Page/Menu
15
User-Defined Queries
15
Displaying Information from Other Tables
16
Combo Boxes
16
Sub-Forms Based on Tables
17
Sub-Forms Based on Queries
18
Referring to Values on Subforms
18
Requerying
18
Visual BASIC for Applications (VBA)
19
Message Boxes
19
The If Command
20
Setting the Values of Fields
20
Practical Examples
20
Clashing/Overlapping Appointments
20
Discrete Appointments
21
Variable-Length Bookings
22
Merits Database
23
The Problem
23
Tables
24
Queries
24
Forms
25
Reports
25
Macros
25
Stock Control
26
Troubleshooting and Miscellaneous Tips
27
You May be at the End of a Record Set
27
Converting Between Different Versions of Access
27
Concatenating (Joining) Fields
27
Date Queries Don’t Work
27
I Have Trouble Referring to Form Objects in Macros
27
Help On-Line
27
Leszynski/Reddick Naming Conventions
28
Level 1
28
Level 2
28

Database Structure

Before you can store information using a computer, you need to think about exactly which pieces of information you are going store, and what type of information they are.

Fields, Records and Tables

The first thing you need to think about are the fields you are going to use. Fields are the categories of information that your database is going to store. For example, our school gives out merits to students who have worked well. To produce a merits database, you would include fields such as Student Name, Tutor Group, Subject, Date, Reason for Merit, Teacher, etc.

Once you've decided on the fields you're going to use, you can start entering the data. All the information for one person or thing, i.e. the information for all fields gathered together, is called a record. In the merits database example, therefore, each student who had a merit would have a record in the database.

All the records are then gathered together in a table (or the file, if you're using a flat-file database).

Field Types

Most database programs allow, or rather require, that you give each field in your database a type. The field type indicates what type of information is going to be stored in that field. Common field types are:

	· whole numbers

· decimal numbers

· text
	· dates

· Boolean (or yes/no)

Some more advanced databases also let you store multimedia objects, such as pictures or sounds.

Field types form a basic type of validation in that the database won't allow you to enter, say, text in a date field. They also facilitate sorting, as the database "knows" more about the contents of the field. If you were to store numbers in a text field, for example, and then sort them, 11 would come before 2 because the character 1 comes before 2, and the numbers would be sorted in alphabetical order.

For our merits database, then, we would use text for the name, tutor group, reason, teacher and subject, and a date field for the date of the merit.

Key Field/Unique Key

In order to produce a logical structure for your database, there should be something unique about each record in your database. This will normally be the contents of one particular field, called the key field. For example, if you had a car database, then you could use the registration number as the unique key, as no two cars should have the same one.

Sometimes you can't identify a single key field in your database table. In the merits database, for example, there would be no one thing about a merit that would be unique. It couldn't be the date, because there could be more than one merit given per day. It couldn't be the teacher or the student, because that would mean they could only give or receive one merit ever. It's even unlikely to be the reason, as some teachers are just going to enter things like "Good work!".

In cases such as this, you can create what is known as a compound key - a combination of fields that is unique. This can be any number of field, but should be the minimum number required to produced a unique description of the record. In the merits database, for example, you could go for a combination of student, date and subject. A student might get more than one merit, ever. He/she might get more than one for a particular subject, and possibly ever two on the same day, but it's probably unlikely that he or she will get two merits on the same day for the same subject.

Indexes

The final thing you can create for your fields is an index. Once you've started using your database, the data can be stored in the table in any order, probably the order in which you entered. If you've got a lot of records in your database, then sorting and searching could take a long time. An index is just like the index in a book - it is an extra bit added on to the database to help the database program find records quickly. You are discouraged from indexing every field in your database as there is an overhead involved when creating the records, but you should index all key fields and any fields that you regularly use to search or sort.

Validation

Validation is the name given to the process whereby the information entered in the database is checked to ensure that it makes sense. For example, you can use validation to check that only numbers between 0 and 100 are entered in a percentage field, or only Male or Female is entered in a sex field. It cannot check that it is correct (the process of checking that the data is actually right is called verification).

Obviously it's very important that the information in your database is correct if you're going to get worthwhile results when you search or sort the data. There are various methods that you can use to check your data.

Type

The use of field types (see the Structure page) forms a basic type of validation. If you make a particular field numeric (i.e. a number), for example, then it won't let you enter any letters or other non-numeric characters. Be careful when using the numeric types, however - if you use them for things like phone numbers, for example, you won't be able to enter spaces or any other sorts of formatting.

Presence

This type of validation might go by different names, depending on your database program - sometimes it's called something like Allow Blank or mandatory for example. This type of validation forces the user to enter the data in that field.

If you had an address book, for example, you might know the person's address and not their phone number, or vice-versa, so it wouldn't make sense to make those fields mandatory. On the other hand, it doesn't make sense to have an address book entry with no name, so you should check for the presence of the name.

Uniqueness

Some database programs allow you to check whether the contents of a particular field are unique. This might be useful to prevent users entering the same information twice. For example, if you were creating a car database, you should make the registration number field unique as no two cars should have the same number.

Range

If you're using a number field, then you might want to limit the range of inputs. For example, you might want to limit prices in a stock database so that they are all positive, or limit the range of a percentage field so that the values entered are between 0 and 100.

Format

You might have a field in your database that requires an entry in a particular format. A simple example might be a date, or piece of text of a certain length. More complex examples might include things like postcodes, or National Insurance or driving licence numbers. If you're using Access, you can define your own formats using an input mask, which defines the valid characters.

Multiple Choice

A good way to validate fields is to use multiple choice responses. These might take the form of a listbox, combo box, or radio button. For example, you could create a field that would only allow the user to select from Yes or No, or Male or Female. This can be an especially useful technique in database applications such as Access, which allow you to dynamically generate the choices.

For example, if you created a database system to manage bookings, rather than checking the dates and times after they have been entered, to check that there are no double-bookings, you could use a query and a combo-box to only show the available times. That would stop you making double-bookings in the first place, and make any subsequent validation much simpler.

Referential Integrity

Finally, if you're using a relational database, then you can enforce referential integrity to validate inputs. This means you can check entries in certain fields against values in other tables. For example, in the merits database, when a new merit is entered, you could check the names of the students and teachers against the student and staff tables, to prevent either spelling errors, or the entry of merits for students that don't exist.

Relational Databases

So far we've only discussed having one table in a database. In the merits database, for example, we've talked about using the following fields to store the information about the merits:

	· Name

· Tutor group

· Teacher

· Subject
	· Date

· Reason

· Head of year

· Tutor

Data Redundancy & Inconsistency

This database structure would do the job, but think about what would happen as you enter the merits. For each new merit you add, you need to enter all of the teacher and student details each time. This would involve a lot of data being duplicated, and therefore takes up a lot more disc space. This is known as redundancy.

As well as requiring more space, and time to enter, a number of other problems could arise. If you're having to enter all the details each time, there is a risk that you could make a mistake whilst entering some of the details, leading to, for example, a number of different spellings of a student's name. And what happens if a student changes tutor group half-way through the year, and you want to find the total number of merits for a particular tutor group?

[image: image2.png]descrptions
head

D
forename
vear

tutor_group

Multiple Tables

The solution to this problem is to use a database that consists of several tables - a relational database. This involves separating out the various fields into logical units, or entities. Each entity would normally represent one person, or thing. These entities are then linked by a relationship, and the whole database structure can be represented by a thing called an Entity-Relationship Diagram. Access allows you produce an entity-relationship diagram of sorts - an example of one solution to the merits problem is shown on the right.

The logical units, or entities, in the merits system are the students, the staff, and the merits themselves (remember that you can download the merits database). This means that the details of the students and the members of staff only need to be entered once. When you enter a new merit, you only need to enter enough information to identify the student and the member of staff (i.e. staff initials & department, and student number) - the remaining information can then be looked up from the staff and student tables. If you're using Access, you can create forms for use with the database so that that user can select from staff and student names, whilst only storing the initials and student number in the merits table.

I have included the extra entity, containing just staff and department, because each member of staff may teach more than one subject. There are also more entities which are not shown in the diagram, such as staff and tutor group (identifying tutor and head of year) tables.

The relationships (i.e. the lines on the diagram) link together the fields in the two tables that contain the same information - e.g. the student field in the tbl_merits table and the ID field in tbl_students both have the same type, and both contain an integer that is unique to each student. This means that there is still a very small amount of duplication (just one extra number per student), but nowhere near as much as there is in the single table solution. A field that is linked to another table is called a foreign key. A foreign key in one table is always linked to a key field in another table (the key fields are shown in bold - more than one bold field indicates a compound key).

Degree of Relationship

You will probably have noticed that the relationships have little symbols at the end, either a 1 or the infinity symbol. These indicate the degree of the relationship, where the infinity symbol means many. The degree indicates the nature of the relationship between the entities - for example, in the merits database shown above, one department can have many members of staff, one member of staff can give many merits, and each student can have many merits give to them. One the other hand, each merit can only be given by one member of staff, and can only be given to one student.

Access doesn't use the standard notation, however. It is more usual to indicate the degree using the line alone - with a single line at the one end, and a three-tined fork at the many end. Obviously, there are three possible types of relationship…

· one-to-one

· one-to-many (or vice-versa)

· many-to-many

…although many-to-many relationships are frowned upon in database design, as they introduce ambiguity, and should be removed using Normalisation.

Searching (or Queries)

Another reason to use a relational database is that it makes it much easier to query, or search, certain fields.

Imagine that a library allowed you to borrow up to six books, and had a simple database with the following fields:

	· borrower name

· address

· phone number

· book1

· book2
	· book3

· book4

· book5

· book6

If you wanted to find out who had borrowed a particular book, e.g. "Databases for Beginners", you would have to have a query like this:

book1 is equal to "Databases for Beginners" OR book2 is equal to "Databases for Beginners" OR book3 is equal to "Databases for Beginners" OR book4 is equal to "Databases for Beginners" OR book5 is equal to "Databases for Beginners" OR book6 is equal to "Databases for Beginners"

Nice! Now, if you split up your database so that you had three tables, it would be much easier. You'd have tables for books and borrowers, and then one for the actual process or borrowing a book, that would just contain the borrower ID and probably the ISBN number. If the ISBN of the book you were looking for was 0123456789, for example, then you could find out who had borrowed by just searching for:

ISBN is equal to 0123456789

Much simpler, I'm sure you'll agree!

Referential Integrity

What would happen if you had two records in your database that were linked by a relationship, and then the foreign key or the primary key changed? Or one of the records was deleted from the database? For example, in our merit database, what would happen if you gave a merit to someone who then changed tutor groups or left the school completely?

The two records would no longer be linked properly, and "referential integrity" would be lost (i.e. the rules governing how the data are related have been broken).

There are two ways around this problem:

· The simplest thing would be to stop the user making any change that would threaten referential integrity. You may have already noticed that Access won't let you delete information from a linked field, or enter information that would prevent it from being linked to another table (e.g. in our merit database, it won't let you enter merits for students or staff who don't exist in the student and staff tables).

· Some database programs allow you to "cascade" any change to keys to other tables, so that if you change a key field, the matching fields in other tables are also changed. So, if one of the students in our student database were to change tutor group, for example, the tutor group field in the merit table would also be updated and the records would still be linked.

Normalisation

The process of refining the structure of a database to minimise redundancy and improve integrity is called normalisation. When a database has been normalised, it is said to be in normal form. There are three normal forms:

First Normal Form

A database is in first normal form if there are no repeated fields. That means that there must only be one field for each item of data you want to score. The library database described on the previous section is not in first normal form because it has the fields book1, book2, book3, book4, book5, and book6, which all store the same information, i.e. the name of a book. First normal form not only facilitates searching, but is also more space efficient as there wouldn't be 5 empty fields being stored if borrowers only had one book.

Second Normal Form

A database is said to be in second normal form if it:

· is already in first normal form

· has no fields that aren't dependent on the whole of the key

That is to say that all fields are dependent on the whole of the key (where there is a compound key). So, take a look at the merits database from the in the previous section:

	· Name

· Tutor group

· Teacher

· Subject
	· Date

· Reason

· Head of year

· Tutor

There are no repeated fields, so it's in first normal form. If you made name the key field, however, you could see there would be fields that aren't dependent on the key. Subject, for example, is related to the teacher, not to the student. This database, therefore, is not in second normal form. Even if you were to make a compound key to include the date and the teacher giving the merit, it still wouldn't be in second normal before because subject wouldn't be dependent on the whole of the key.

Third Normal Form

A database is in third normal form if it:

· is already in second normal form

· it has no non-key dependencies

By non-key dependencies, we mean that there are no fields that are dependent on other fields that are not part of the key. For example, in the version of merits database above, where Name was the key, the subject was related to the teacher, and not to the student - that is a non-key dependency.

Normalisation in Projects

This all sounds quite complicated, but don’t worry about contriving your coursework design or having to start and then refine your database – i.e. don't try to start at first normal form, and then go to second normal form, and then to third. The key thing is to think about what your entities (or tables) are going to be - if you pick the right ones it'll normalise itself.

The Normalisation Oath

Well, don't forget it all, however, because you may be asked about normalisation in an exam. Here's a little tip to remember the three stages - we call it the Normalisation Oath:

Each attribute is dependent on the key, the whole key, and nothing but the key!
So, to get to third normal form, your non-repeating fields (first normal form) need to be dependent on the whole of the key (second normal form), and nothing other than the key (third normal form). It works for me!

Access

If you're about to embark on your first Access project, here are a few tips to point you in the right direction. Access is a large and complex application, and can seem a little daunting at first, and getting to know what it can do and what you want to do is a good first step.

Fields

Field Types

Field types have been discussed previously, but Access has a few more options associated with the main types – these are detailed below:

	PRIVATE
Integers:

· Short integer

· Long integer
	Integers are whole numbers, and integer variables are used when you know there is never going to be anything after the decimal point, e.g. if you're writing a lottery ball generator, all the balls have whole numbers on them. The difference between short integers, integers and long integers is the number of used to store them – if you’re going to be dealing with large numbers, then select Long Integer. Remember that number fields allow you to enter numbers only – if you want to include spaces or punctuation, choose text.

	Floating point:

· Single

· Double
	Floating point numbers are ones that contain fractional parts - i.e. they are not whole numbers. The single and double quantifiers are analogous to the short and long quantifiers used with integers - i.e. they indicate how many bits are used to store the variable. Floating point arithmetic can lead to problems with rounding and precision, so if you're dealing with a limited number of decimal places, it is probably more efficient to use integers and multiply all your values by a power of 10.

	Boolean (yes/no)
	A Boolean variable can store one of two values - either TRUE or FALSE. This is actually stored as an integer - in VisualBASIC, for example, FALSE is 0 and TRUE is -1, and you can use these values in calculations.

	Strings:

· text

· memo
	Strings are variables that contain text, and they come in two sorts. With a text field, you declare how many characters the string is going to hold in the properties at the bottom of the screen. The maximum number of characters is 255.

A memo field is a effectively a text field of (practically) unlimited length – this is good for adding fields to your database for notes, etc., but will be less efficient for fields containing just a few characters.

	Dates
	There are various date formats that control the way in which the date appears – they have no effect on the way in which it is stored. However, be careful when using the Now() function – it stores the time as well as the date and can upset any queries using dates. It’s probably better to use Date().

Naming Fields

While Access allows you to put spaces in table and form field names, it's not a good idea - use underscores or capitals to make names more legible. The reason for this is that it becomes difficult to refer to objects with spaces in their names if you're going to write macros in VBA. Access will also allow you to use VisualBASIC keywords as field names, but clearly this isn't a good idea, either, as referring to a field called, say, Next in a macro will probably cause an error to occur.

Indexes

The data can be stored in a database in any order (normally the order in which you enter it). For this reason, it can often take a long time to find a record in a very large database, particularly if you are making a complex query across several tables.

Access can speed things up by creating an index. This is applied at the field level and works like the index in a book. An index tells the DBMS where a particular record is located within the database. You do not need, therefore, to search through every record in the database to find the ones that match your criteria. You just need to search through the index.

Reports and queries that use several tables benefit especially from the use of indexes. It is a good idea to ensure that your primary and foreign keys are indexed (in fact, Access will probably insist that they are when you related the tables). By changing the indexes in a database of several thousand records, I once reduced the time it took to run a report from about half an hour to less than a minute!

Other Options

There are various other options that can be selected for the fields when you are creating tables, such as validation, default values, input masks, and methods of entry, e.g. list boxes and combo-boxes. However, if you’re going to be using forms in your system, there isn’t really any point in setting these as they will be over-written by the properties of your form.

Relationships

[image: image3.png]Form: date_range

Print merits for date range:

Start date:

LT o —

Relationships are created in Access by making the links between tables that are represented graphically, like creating an entity-relationship model. Select Relationships from the Tools menu, or click the button on the toolbar to display the relevant screen.

PRIVATE
Your tables will be unlinked to begin with. Before you can link two tables together, there must be fields in each that represent the same thing (e.g. in our merit database example, there must be student name fields in both the student table and the merit table, and staff name fields in both the merit and staff tables).

To create a relationship between two tables drag the field that is the foreign key in one table to the second table. A screen appears where you can select various options.

If you are using a compound key, you will need to set more than one field to be equal to a field in other table (this will make sense when you see the screen!).

The degree of the relationship (e.g. one-to-one, one-to-many, etc.) will not be shown unless you select "Enforce Referential Integrity". Access automatically determines the degree of the relationship based on the keys in the two tables being linked. If the degree of the relationship is not as you expected, the most likely cause if that you've made a mistake when selecting your compound key in one of the tables.

Referential Integrity

What would happen if you had two records in your database that were linked by a relationship, and then the foreign key or the primary key changed? Or one of the records was deleted from the database? For example, in our merit database, what would happen if you gave a merit to someone who then changed tutor groups or left the school completely?

The two records would no longer be linked properly, and "referential integrity" would be lost (i.e. the rules governing how the data are related have been broken).

There are two ways around this problem:

· The simplest thing would be to stop the user making any change that would threaten referential integrity. You may have already noticed that Access won't let you delete information from a linked field, or enter information that would prevent it from being linked to another table (e.g. in our merit database, it won't let you enter merits for students or staff who don't exist in the student and staff tables).

· Some database programs allow you to "cascade" any change to keys to other tables, so that if you change a key field, the matching fields in other tables are also changed. So, if one of the students in our student database were to change tutor group, for example, the tutor group field in the merit table would also be updated and the records would still be linked.

Queries

Queries are the things you create to do searches in Access. There are some key things about queries that you should know:

· You can create queries that use information from various tables. In fact, you can include a table more than once if you want to include two values from that table – see the Merits example for details.

· You can query both tables and other queries – i.e. you can do a query on the results of a query or link a table to a query with a relationship; this can be a useful technique as shown in the appointment clashing example.

· You don’t have to show fields that you use to match your criteria – just untick the Show checkbox.

· You can create derived values in queries, e.g. to perform some sort of arithmetic function or concatenate fields together.

· You can use both AND and OR by placing your criteria correctly on different lines of the query table. However, you should understand the idea of operator precedence – this is similar to the idea of BODMAS in arithmetic calculations. AND behaves like multiplication, and OR behaves like addition, so in the Boolean expression:

a OR b AND c

the b AND c part will be done first, and then the result combined with a using an OR operation.

Counting, Totals, etc.

You can quite easily add totals, minima, maxima or counts to your queries by clicking the (button on the toolbar in design view. An extra row will appear above the criteria, and you can choose the type of function you require.

Derived Values

You can derive values in queries, either by performing mathematical calculations or concatenating strings. This could be useful, for example, to combine forenames and surnames to derive a full name field. This could then be used in a combo box to make things simpler for the user. To create a derived field, click the right mouse button in the Field: row in design view, and select Build... You can then enter the calculation in the box, e.g.

forename & “ “ & surname

You can use fields from either tables or the query itself. Note that the query fields won’t appear in the tree until you’ve saved the query.

Update and Delete Queries

You can get your queries to update or delete records in tables, too. To do this, create a query as normal and enter the criteria needed to select the records you want to delete or update. Then change the type of the query using the Query Type toolbar button (it’s got two overlapping rectangles on it).

If you select an update query, an extra row will appear above the criteria; use this to enter the values that you want to add to the table – this can either be a fixed value or you can use the Builder to use functions or enter values from other fields.

Forms

[image: image4.png]Select A Table/Query

s

Forn Wizards Blank Forn

Forms in Access are screens that you can create to go on top of the database tables to make them easier to use. That is, you can create a nicer user interface with buttons, etc., to help the operator use your database.

Another benefit of using forms is that you only have to show the fields that a particular user needs to see. You can hide things like counters, and also include information from other, linked tables. Forms can be used to display information from existing records, or, if the Data Entry property is set to Yes, the form can be used for entering new records whilst hiding existing records from the user.

You can also use things called subforms. These let you create a form based on one database table that contains matching information from another table, so you could create a form based on the student table that had a list of the student's merits (from the related merit table) at the bottom.

In fact, forms don't have to be based on database tables at all. They can also be bound to queries, or you can also them with queries and reports to produce a type of dialogue box to request criteria for the search. Just create a form as normal, but don't base it on a table. Fields from this form can then be included in a report or query just as though they were in an ordinary database table.

We could create a form, for example, that asked for two dates, and then create a query and report that printed a list of all merits given between these two dates.

In a form, if a field is bound to a database field, then any information entered in that field is saved to that table. You can select a field to bind to in the Control Source option of the Data Properties section of the field properties.

If a form field is unbound, that means it is not attached to a database table, and the information is not saved. Unbound fields can be used to display information that is looked up from other tables, or to collect information to simulate a dialogue box. You can perform calculations by entering an Excel-like formula as the Control Source property.

Form Properties

As well as the individual controls on the forms having properties, the form itself has properties. If you click the right mouse button on the grey area that is outside the area of your form, but still inside the window that contains the form, there are options in Layout Properties that you can set.

These control things like whether the user can resize or minimise the window, whether scroll bars appear, and whether or not there are any Record Selectors or Navigation Buttons (these are the Next/Previous arrow buttons which are normally at the bottom of the window). Finally, you can select in Default View whether the user can see a Single Form (i.e. record) at a time, or whether multiple records can be seen.

Probably the most useful of these is Data Entry – if you set this property to Yes, then the form will appear blank when you open it, i.e. it is used for entering new records, rather than displaying or editing existing ones. If you don’t set this property to Yes, when you type in your new record and save it, you will amend the first record in your table, rather than add a new record.

Choosing Controls

A control is the generic term for something on a form, e.g. a textbox, radio button, combo-box, button, etc. Before you create your form, you should think carefully about how you can make like easy for the user – will they have to type in all the information, or will they be able to select certain items from a list?

As well as making your system simpler to operate, multiple choice options such as combo-boxes also provide an excellent form of validation by only allowing the user to select from a list of valid options. This list of options can be generated dynamically – you don’t necessarily need to decide what they are when you create your form.

Combo Boxes

Combo boxes are the drop-down lists that you often see in Windows, e.g. for the typefaces and font sizes in Word. They are useful, because they can allow you not only to validate entry against a list of words (although you can choose to allow users to enter other things, if you wish), but they allow the user to see what the list is. In Access, you can fill this list using a table or query.

[image: image5.bmp]Creating a combo-box from scratch is a little tricky, so I think it’s acceptable to use the wizard in your project. The key thing to remember about combo-boxes is that you can show one thing in the drop-down list, but actually store another thing. For example, you might have a field that stores the code for a person, but want the user to be able to select their name.

Shown on the right are the combo-box properties for the patient field in the doctor’s appointment example from Shared Documents.

The important things to notice are that although the list contains the names of the students, the combo-box is bound to the patient_number field, and that the list shows two columns, but that the width of the first one is 0cm – i.e. the first column contains the patient code, but it can’t be seen – and it is the invisible column that is bound to the table.

[image: image6.png]Staff: [SD_[E] Mrs Dubery. RE

The text in the Row Source property is the SQL that fills the combo-box – this is created for you by the wizard, but you can change what the drop-down list displays by clicking on the ellipsis button.

Sorting and Grouping Combo Boxes

The Row Source properties for a combo-box are effectively a standard Access query. The properties for the patient_number example are shown on the right.

You can then do anything to your combo-box that you can do to a query, e.g. you can add extra columns, add criteria to limit the list, or sort the options.

Probably one of the most useful things you can do is group your options, using the Totals (() button. This will remove any duplicates from your list, so that each option appears only once.

List Boxes

List boxes look similar to combo-boxes, but are probably best avoided unless you really need their functionality. They differ in two main ways:

· All of the options are shown at once – i.e. the list does not drop down

· You can select more than one of the options by using the Ctrl key when clicking

This second difference can make list boxes particularly tricky to use, especially if you bind them to a field in a table – if you select two of the options, which one will actually get stored in the associated record?

Input Masks

Input masks can be a useful way to restrict entry to a text box where the data being entered has a rigidly defined format, but you need to be careful about where you use them. Think careful about whether they are really needed, as it can be very annoying for the user if they come up with an exception to the rule you’ve tried to implement.

Some things, such as National Insurance numbers, have identical formats, and validating these would be a good use of input masks. Other things are generally the same, but not always. Examples of fields for which I would not try to use input masks include:

· Postcodes – lots of people try to use input masks for these, but there are so many valid formats that you’ll never get it right! For example, there can be one or two letters at the start, followed by either one or two digits. Then some places have another letter, before one or two more digits and two letters. There are also specialised postcodes for institutions such as Girobank.

· Telephone numbers – there are all sorts of formats; mobile, national and international numbers, as well as the non-geographical codes, such as 0845, 0898, etc., and large metropolitan areas also have a different format for their codes.

· Bank account numbers – most have 8 digits, but Girobank accounts have 9, and they also have some sort of check-digit that is cross-referenced with the sort code.

The Access help for input masks probably tells you all you need to know – just go to the input mask properties for the field and press the F1 key.

Enabling, Disabling and Hiding Controls

Controls on forms have two useful properties that you can set using simple codes in macros – enabled and visible. These control whether you can operate (e.g. click/edit/change, depending on the control type) or even see the control. You can use these to make optional elements on your form appear or disappear, e.g. you might have a radio button for something like “Contact by e-mail”, and if Yes is selected you will need to display a field for entering an e-mail address.

The first thing you need to decide is what event will trigger the enabling/disabling or hiding/showing of the control – in this case it would be the OnClick event on the Yes radio button. If your e-mail address text-box was called email, then the codes for showing and enabling the text-box would be:

email.visible = true

email.enabled = true

The corresponding codes for hiding and disabling would be:

email.visible = false

email.enabled = false

For details on how to find and enter these codes, see the section on Requerying.

Tab Order

When you press the tab key on the keyboard, the focus (i.e. the position of the cursor on the screen) moves between the controls in a particular order.

By default, this order will be the order in which you put the controls on the form. This might not always be the right order – you should be able to tab through the controls in the order in which the should logically be filled in or used – i.e. the key fields first, and then to the buttons for saving, etc.

You can change the tab order yourself in the form design view. Click the right mouse button on the form, and select Tab Order – you will be presented with a list of all the controls on your form. You can then drag the entries up and down the list until they are in the correct order – just put anything you wouldn’t normally use, such as frames and text labels, at the end of the list.

Startup Page/Menu

In Access you can create a macro that is run automatically when a database is opened. Just create a new macro, and call it AutoExec. Anything you set the macro to do will then be done when you load your database. If you use Access 97 (or a newer version), then you can choose a form to be displayed automatically when the database is opened (choose Startup... from the Tools menu).

This can be useful for creating a "welcome" page, or a menu. Just create the page as a form, and create your AutoExec macro to open the form.

User-Defined Queries

[image: image7.png]Subform/Subreport: Embedded47

Data Properties =

Source Dbject =
Link Child Fieds ... itils

Link MasterFilds . field28

Enabled Yes

You may want to create a query that allows the user to enter some or all of the criteria for the search. You can do this quite simply by creating a form that can be treated as a dialogue box.

To create a query that takes user input, follow the steps below:

1. [image: image8.png]& frm_appointments ey

Patient

Doctor

Date

Time.

Create a form to be used as your dialogue box. Don't bind it to a table - just create a blank unbound form (i.e. don't select a table from the list, just click the Blank Form button) and add the fields and combo boxes you require.

To create a field, click the .

It is a good idea to give your fields a name at this point (which is also done in Properties) so that you can refer to them later.
button shown on the left instead of the ab| buttonbutton shown on the left – it should be on the toolbar. The type of the field (e.g. date) can be set in the Data Properties section (shown further down), as can any default values.

To have a date field default today's date, for example, enter =Date() in the Default Value field in properties. There are more functions available if you click the ... button to the right of the field.

You can create a Combo Box (i.e. a field with a drop-down list of options) in a similar way by clicking
the
2. Create the Query as normal, but instead of entering fixed search criteria, enter the value from your form. You can do this by clicking the right mouse button and selecting Build from the menu that appears.

On the Expression Builder screen, double-click the Forms branch, then All Forms, and finally the name of the form that you are using as your dialogue box. All the fields on the form appear in the middle of the screen.

Double-click the one you want and click OK. Enter any other criteria and the fields you want the query to display as normal and save the query.

3. If you want the results of the query to be output to the printer, you can also create a report at this time, and bind it to the query.

4. The final stage is to add a button to your form to run the query or report.

Return to your form in design view and add a command button. This can either run the query or report directly, or you can create a macro and get your button to run that.

When you create a button, a wizard appears which takes you through the steps required to make it do what you want, display text or a picture on it, etc. When you come to select the action of the button:

· If you want your button to print a report, select the Print Report option from Report Operations.

· If you want your button to display a report on the screen, select the Preview Report option from Report Operations.

· If you want your button to run a query, select the Run Query option from Miscellaneous.

· If you want your button to run a macro, select the Run Macro option from Miscellaneous.

You will then be asked which query/report/macro you want to run, so you need to have created it already. It may be a good idea to add another button at this point to close the form (e.g. one called "Cancel").

All you need to do now to run your query or report is open the form that you are using as your dialogue box.

Displaying Information from Other Tables

Quite often it would be nice to see related data from another table. For example, when you are entering codes that relate to records from other entities. In the Merits database, for example, you are required to enter the students name and the staff initials on the merits form. The enforcement of referential integrity means that you are only allowed to enter the names of students who are in the students table, and the initials of teachers who are in the staff table.

Two techniques might be useful here; the ability to select these names and initials from a drop down list, and also to be able to check whether the initials you have entered relate to the correct person.

Combo Boxes

Combo boxes are probably the easiest way to display information from another table – see the explanation of how to use them in the Forms section above. You can also use combo boxes to set the values of other fields (i.e. text boxes) on your form. Imagine, for example, that you wanted to be able to select a product from a combo box, and have its price shown in a text box on the same form. You can do this as follows:

[image: image9.png]

In the combo box Query Builder (i.e. the thing that appears when you edit the Row Source in the combo box properties, shown below left), make sure you include all of the fields that you want to display on the form. In this example, my combo box is going to show the product description and store the product ID in the combo box itself, but I’ve included the price because I want to show that elsewhere on the form.

[image: image10.png]=181

Private Sub room_change () = |

previous booking.Requery
next_booking. Requery

End sub
Private Sub room LestFocus ()

previous booking.Requery
next_booking. Requery

In the combo box properties, make sure that the Column Count is set to the right number, and that the Column Widths are set to 0cm for all columns that you don’t want to appear in your combo box (see example, below right).

The final step is to add the text box for the price and set the Control Source so that it refers to the appropriate column from the combo box. The columns are numbered starting at zero, so the third column is column 2.

[image: image11.png]doctor

There is a combo box property called Column (although it doesn’t appear in the Builder) which takes as a parameter the column number and returns the value in that column for the row selected by the user.

[image: image12.png]| ¢ Form_fem_merits : class Module S [= £}

|m« =] [enange =]

Private Sus statf Change(] = |

department . Requery J

If department.ListCount = 1 Then
department.Value = department.Itembata(0)
department.Ensbled = False

Else
department.Value = department.Itembata(0)
department.Enabled = True

End If

End sub -
< v

In this example, entering =[product_ID].[Column](2) as the Control Source will give the price of the product selected by the user.

The only other thing you might want to do is disable and lock the price text box so that it can’t be selected by the user, and set the Tab Stop property (on the Other tab) to No so that the focus jumps over the control when the user presses the Tab key.

Sub-Forms Based on Tables

[image: image13.png]Staf
Sublect
Studert
Date

Reason

[Tararz00

™ Printed

[Tust Becausel

Save Cancel

Sometimes it is useful to "lookup" values from another form or table, for example to check that the right code has been entered.

The only obvious way to do this is by using a subform. A subform is a way of embedding one form into another. The relationships you have created will then ensure that the record shown in the subform is linked to the one displayed on the main form.

The first thing you need to do (if you're not using the Wizard) is to create the subform. Create the form that you wish to appear inside the main form, and set the fonts, colours, etc., as you want them.

[image: image14.png]stock_code
supplier_code:
rumber

date.

Fild:
Table:
Tota
St
Show
Citeria

desciplion | defveries I{ictal]Is Nl otal] | (ol Sum{{bl_defverpl[rumber]
hl_stook.
Gioup By | Evpression Expression

On your subform you need to include all the fields that you want to display on the main form, plus any that are used to link it to the main form. So in my example, I included a staff initial field on the subform as well, but in the Properties I set Visible to No. It makes things much easier if you give your textboxes, etc., on the form proper names, and make them the same as the names of the fields in the table to which they are bound.

[image: image15.png]b depar
department

descrptions
head

The next stage is to open in Design View the form you want to use as your main form and insert a container for the subform. You can do this by click the Subform/Subreport button on the toolbar (right):
Drag out a box large enough to contain the information you want to display, and go to the Data Properties.

[image: image16.png]customer
2
arive 3

people 0

soshocnd | Gaon

In the Source Object field, enter the name of the subform you have just created (i.e. the name of the form that contains the information you want to display on this form). The Link Child Fields and Link Master Fields fields are used to link the two forms together, just as a relationship links together two table. You must enter the names of the fields on each form that are equivalent.

This is the point where you will reap the benefit if you have your form fields the same name as the database fields, because Access will complete the Link Child Fields and Link Master Fields fields for you.

In Link Master Fields, you enter the name of the field on the main form that is the key to the subform (i.e. in my example it is the initials field, which is called Field28, because we want to "lookup" the name to go with those initials). In Link Child Fields, you enter the name of the corresponding field on your subform (which is probably the one that you made invisible).

If you’re using a compound key, or need to include two or more fields in the link between the two forms, separate the field names with a semi-colon, and make sure that they are in the same order in each box.

Hopefully, that should be all you need to do to make the information appear on the form – when you change the information on the main form, the subform will be updated automatically. You will probably need to adjust to the subform properties to stop things like scroll bars and record selectors appearing if you want the subform to integrate seamlessly with your main form, like I have done in the example above.

You can also use the same technique to display tables of information, such as a list of all the merits for one student, or all the merits given by one member of staff. The only thing you need to do differently is to change the properties of the form you are using as the subform so that the view is Continuous.

Sub-Forms Based on Queries

Another useful technique is to base your subform on a query, rather than a database table. This is probably easier, because you don’t need to select any child and master fields. What you do need to do, however, is ensure that you requery your subform when anything on the main form is changed.

Referring to Values on Subforms

Sometimes you might want to refer to a value on a subform and use it in a calculation on your main form, or vice versa. This isn’t too difficult, but you need to remember that you can’t refer to a value on a subform as though that form were open and existing on its own, because Access won’t recognise it as existing.

You need to access the fields on the subform through the subform object on the main form. That is, when you use the Expression Builder, don’t select the subform from underneath the Forms branch, but select the main form, and then in the middle box double-click the name of the object that is the subform.

[image: image17.png]Fild:
Table:
St
Show
Citeria

descrplion

Stock: [delveries}[sales]

ay_delveres

You then need to manually add to the top box an exclamation mark, followed by the name of the field on the subform that you want to use – e.g. if the field you wanted to use was called tel_number, the full entry in the top box would be:

[numbers]![tel_number]

To refer to a field on the main form from within a subform, you effective do the same thing, but the main form is always called parent, e.g: [parent]![address]

Requerying

The requery action in VBA re-reruns the query upon which something (e.g. a combo-box or subform) is based, thereby updating the information that it contains. This needs to be triggered using some sort of event on your form – it is best done using the OnChange or OnLostFocus event of any field that is used in the query (OnLostFocus seems to be most reliable). The OnChange event occurs when the value in a field is changed – this works well for combo-boxes, but doesn’t always been to be triggered for textboxes.

[image: image18.png]x|
Format | oata Evert | other | a1 |

These events are found on the Event tab of the properties dialogue (shown above) of the field or button that you want to use to trigger the requery – not the object that you want to be requeried. If you click on the ellipsis button next to the name of the event, you will be given three choices – select Code Builder to be taken to the Visual BASIC editor.

You then just need to type one line of code – this will be the name of the object to be requeried (i.e. the subform or combo-box), followed by .requery. This name is name you gave the object on the form, not the name of the field in the table. You can tell when you’ve got it right, because when you press the full-stop, .requery will be in the list of methods.

[image: image19.png]=18

Option Compare Database
option Explicit

Private Sus number_Change ()

type.x

Encgt RowSource
5 RowSourceType
e Section

e Sellength

e Selstart

5 SelText

Visual BASIC for Applications (VBA)

According to the A level ICT syllabus, creating a wholly programmed solution is not in the spirit of the course, so you should only use VBA sparingly in your systems (if you need to use it at all).

Most of the things that your system needs to do can be accomplished using standard Access functions. The sorts of things you might need VBA for are:

· Requerying subforms and combo-boxes (discussed above)

· Enabling, disabling and hiding controls (discussed in the Forms section)

· Checking for overlapping appointments (discussed in the Practical Examples section)

· Displaying confirmation messages using message boxes

· Copying values from one field or form to another

VBA functions are linked to events in your system, such as buttons being clicked, fields being changed, or even forms being opened and closed. To enter the code, go to the Properties for your chosen object and click the Event tab. In there will be a list of all of the events for the object (not all objects have the same events – forms will have an OnResize event, for example, but buttons won’t, because they aren’t resized in normal use). Click on your chosen even, and the ellipsis (…) button will appear to the right. Click that button and choose Code Builder.

Message Boxes

A useful feature of VBA is that you can display pop-up messages to convey information to the user, and ask for confirmation for certain actions, such as closing the system. These are known as message boxes and there is a command in VBA called msgbox() that allows you to control their appearance.

If you just want to display a message (with an OK button), the syntax is quite simple. For example, to display the word Hello in a message box, the command would be:

msgbox(“Hello”)

Note that any text you want to display must be enclosed in speech marks.

There are more options that you can select, but be aware that if you enter more than just the message, then the msgbox() command returns a value, so you use a variable or another command, such as if to handle the value it returns.

As you type a command, the VBA editor will help you with the options, displaying drop-down lists of all the options at each point – the only thing you really need to remember is that all of the options are separated by commas. You can also use the help, of course, by highlighting your command and pressing the F1 key.

If you want to display a message box, with the title “Confirmation”, the message “Are you sure?” and Yes and No buttons, for example, then you would use the following code:

msgbox("Are you sure?",vbYesNo,"Confirm")

Remember that all text values need to be in speech marks. Remember that when you use msgbox() in this way, it returns a value, so you can’t use the command on its own – probably the best thing to do would be to use if, so if you wanted to add some confirmation messages to your system, you could do something like this (on the OnClick event of your Exit button):

If MsgBox("Are you sure you want to exit?", vbYesNo, "Confirm Exit") = vbYes Then Application.Quit

(this is in a small font so that it all fits on one line – lines in the VBA editor are much longer).

The If Command

The If command is used to make decisions in your macro, and can be used either on one line, or as a more complex version with an else clause. The general format is either:

If test_condition then action
Or, if you want to have an alternative action:

If test_condition then

action

Else

other action

End if
Setting the Values of Fields

You can set the value of a particular field (or, indeed, any other property, such as visibility, or whether the field is enabled) from your code quite simply by accessing the properties of them using the name that is at the top of the All tab in the properties. For example:

field_name.value = “Hello”

field_name.value = date()

field_name.value = other_field.value

field_name.enabled = TRUE

field_name.visible = FALSE

Remember that you need to enclose all text values in speech marks. You can also use functions such as date(), and the predefined constants TRUE and FALSE (which do not need to be in speech marks).

Practical Examples

This section of the booklet demonstrates some approaches you could take to common problems in Access. It goes without saying that you should not copy the databases or any of the code without crediting it in your project.

Clashing/Overlapping Appointments

A common type of A level project is a booking system created in Access. One of the most important functions such a system will perform is to prevent double-bookings or clashes. This can be more or less tricky, depending on how the appointments are made. Appointments or bookings fall into two basic categories - either discrete appointments (e.g. a doctor's surgery, where a patient is given a 10-minute slot), or bookings with a start and end time/date (e.g. a booking in a holiday cottage, with arrival and departure dates).

If you're booking hour lessons, or discrete appointments of some sort, then you can use referential integrity to stop double-bookings. If you're booking something like holiday cottages, on the other hand, where there are arrival or departure dates and the bookings can overlap, then it's a little more tricky. On this page I shall propose the methods I would use to prevent double-bookings in each case.

[image: image20.png]descrptions
head

D
forename
vear
tutor_group

Discrete Appointments

In the diagram below you can see the tables and relationships from appointments.mdb (available in Shared Document). It's the classic three-table booking system, with patients, doctors, and a linking appointments table. I've also added a fourth table (tbl_available) that contains a list of all the available appointment slots for each doctor. To make things easier, in this example the surgery has the same appointment times each day, although you could also add the day of the week if you wanted to vary their times.

[image: image21.bmp]Referential integrity will prevent the receptionist from making a booking for a doctor in a time slot that doesn't exist in tbl_available, but what happens if the appointment is already taken on that particular day?

One of the tidiest ways to prevent double-bookings is to use a combo-box to present the user with only the available appointments for a given day (see the form on the left). This can be populated from a query, and requeried whenever the date and/or doctor are changed.

Although the idea of the query - to find available slots on a given day - sounds quite simple, it's not as easy as it first appears. This is because you're looking not just for bookings that don't exist, but bookings that don't exist on a particular day.

My solution, therefore, uses two queries - one that finds the appointments that have been made for a particular doctor on a given day (straightforward enough), and then a second one that effectively subtracts these from the complete list of available slots (i.e. those in tbl_available), to give the available appointments for the chosen day.

[image: image22.bmp]The illustration to the right shows this second query. Note that it contains a table and a query - you will have to create the relationship yourself (you do this by dragging the time field from the table to the query, as you would if you were joining two tables). You also need to change the Join Properties (right click on the line joining the table and the query), to select the middle option - i.e. to show all the records from tbl_available...

Once you've done that, the query itself is quite simple - you just want all the times for your doctor from tbl_available where there isn't a corresponding time in qry_appointments_on_day - i.e. where the time is NULL.

If you now use the form to make a booking for a particular doctor on a given day, you will notice that the time disappears from the list once you've clicked Save, so that that slot can't be used again.

Variable-Length Bookings

Preventing clashes with variable-length bookings is a little more involved. If you've trawled the newsgroups and Access FAQs, then you may have come across the cartesian product method for picking up double-bookings. The problem with this approach is that you do the checking after the record has been saved, by which time it is too late.

[image: image23.png]Fomat | et | Evert | Other A1 |

Name patient 5
Control source patient_nurber

Format

Decimal Places auto

Input Mask.

Rowsource Type . .. TablejQuery

Row Source SELECT DISTINCTROW [tbl_
Column Count 2

Column Heads o

Column Widkhs Ocm;4.048cm

Bound Column 1

List Rows s

List it 4.048m

In clash_test.mdb (in Shared Documents) I've proposed a method for preventing the user from saving clashing bookings in the first place. It isn't overly elegant, and you may need to tweak the events on which the query is re-run to suit your needs, but hopefully it'll give you some idea of how to approach a solution.

[image: image24.png]=181

KIN |

Fild: [patert_rumber name
Table: [1l_patent bl_patient

St Ascendng
Show

Citeria

What happens is that the form used to enter the date has two hidden fields containing the dates of the latest prior booking, and the first subsequent booking, in the same room. When the Save Record button is clicked, a macro compares the dates and stops the save if the dates overlap.

The database itself is just a simple three-table affair, with tables for rooms, customers, and bookings. Generally, things like customer codes are frowned upon, but I've just used them here for simplicity. I've added fields for the number of guests in the party, but I haven't actually done anything with them - the point of the database is only to demonstrate the double-booking validation.

On top of the bookings table, I've created a form (shown to the left) that contains the fields in the table. I've used combo boxes for the customer and room number to make it easier to select rooms and customers that exist and maintain referential integrity.

[image: image25.bmp]Underneath the Save Record and Cancel buttons are two invisible combo-boxes that are populated from the two queries, qry_previous_booking and qry_next_booking. The visible property of both combo-boxes is set to False so that they are hidden.

The query qry_previous_booking finds the latest prior booking in the same room, based on the dates and room you enter. Because you might change the dates or the room number, you need to put a .requery command on the LostFocus or Change events to re-run the query. All that does is ensures that the next and previous bookings always relate to the rooms and dates you have entered.

The next step in the validation process is to check that the appointments don't overlap. This needs to be done before the record is saved, so that you can warn the user and request alternative dates or a different room before it's too late. The easiest way to do this is to add the Save button using the normal wizard, and then add some VBA code afterwards.

[image: image26.png]Fild:
Table:
St
Show
Citeria

Tine. dostor ine.
1bl_svalable [th]_avalable ay_appoiniments_on_dale
n] n]
TFomsTifm_apparimertsl[@actar] s Nul

KT]

The code just uses a simple if... then... else... loop to display a message if the appointment clashes with another, or save the record if it doesn't. To determine whether the start of the new booking comes before the end of the previous one, or whether the end of the new booking comes after the start of the next one, I've used the DateDiff() function. This will give either a positive or a negative answer, depending on which date comes first. You might find it simpler to try a simple comparison, but I've found that > and < don't always work reliably with dates.

The code for the Save button is shown right. Note that you can put most of the if statements on one line, and omit the End Ifs - I've just done it that way so that the code isn't too wide to fit on the screen here. One last thing to bear in mind is that the record will still be saved if you click on the button at the top of the window to close the form. You can get around this either by disabling the Close button (in Form properties), or by adding similar code to the form's Close event to check for clashes there too.

Merits Database

[image: image27.png]=1B1x|
[eave_burton =] [oten]

Frrvare S e e CIiR |
o Trvar aaTo BeE smve Futton C1icx

Din before, after is Integer
T¢ previous_pooking. Tcembata(0) <> "7 Then
hefore = DateDiff("d", previous hooking.Itembata(0], arrive
End It
If next_booking.ItemData(n) <> " Then
after = DateDiff{"d", leave, next_booking.Itembaca(0]]
End It
If before >= 0 ind after >= 0 Then
DaCnel. GoToRecord , , acNewRes
Else
If before < 0 Then
NsgBox ("There will still be someone in the room on this date!",
End It
If after < 0 Then
NsgBox ("Someone is due to arrive before this departure date!”

End If

Ena 1z .
RI— _>l_‘

The merits database that you can get from Shared Documents is an example of a system created in Access that hopefully contains examples of most techniques you might want to use in an A level ICT project, with the exception of preventing double-bookings, which is described in the previous section.

The Problem

A school gives out merits to students. A member of staff gives a merit for his particular subject (or maybe a tutor period). Currently it is written on a standard slip and passed onto the head of year. The head of year then keeps track of how many merits each student has, so that certificates can be awarded at the end of the year to students who receive a certain number. The merit is then passed to the student's tutor, to be given to the student.

The information recorded on the merit is as follows:

· PRIVATE
Student name

· Staff name

· Subject

· Date

· Reason for merit

· Student's tutor

· Student's head of year

I learnt quite a bit about Access myself while I was creating this database. I don't propose to explain the normalisation, etc., but rather the techniques used in Access to implement the solution in a user-friendly manner. I'll take you through them in logical groups (i.e. going across the Access screen a tab at a time!).

[image: image28.png]Anytown High Schoot

MERIT = AWARD

T M Sepire Ty B

e Tmtion & Commniction Teamdoss
For Forcaeaing aserd elatonal dtsbe i Accers!

Gty Laviantegm e 16

Hesdof Year Audrew Brovn EE—

Tables

The entity-relational model (i.e. the relationship screen in Access!) for the database is shown below. I don't think I've done anything particularly bizarre here - students belong to a tutor group, the tutor group belongs to a year, which has a year head who is a member of staff. Subject departments also contain members of staff, and have a department head. The merits table brings together a student and a subject teacher.

Queries

The queries are all quite straightforward, and apart from qry_student_names fall into three basic types - those that find the merits to be printed, those that gather the information for the reports, and the update queries.

The update queries are those with the yellow pencil icon. You should notice that these pair up with an ordinary query with a very similar name, e.g. qry_dept_print and qry_dept_printed. Essentially these have the same criteria - to find all the unprinted merits in a particular category (in this case a department), ready to be printed by the reports - the update query then sets the Printed field to Yes, so that it isn't found the next time the query is run.

The remaining queries gather the information for the reports for the head of year - i.e. all merits for a particular student, tutor group, or year.

All the queries are very similar and were created by copying, pasting and then amending the first query I created. The only interesting thing to note is the multiple occurrences of the staff table in the same query.

I always used to wonder why Access let you add the same table to a query several times - and now I know! On the merit sheet, you have the names of three different members of staff - the person who awarded the merit, the tutor, and the head of year. These are stored as initials in three different tables, but all the full names are stored in the same staff table, and it's the full names we want to print. If you want three different names to appear on the merit, you need to add three copies of the staff table to the query!

[image: image29.jpg]

I said that qry_student_names was different, however. What that query does is to create a derived field that is a combination of the student's surname, forename, and tutor group. This is used to populate any combo-box used to input a student. It allows the user to find any student in the school by typing in the first few letters of the surname until the student is found.

Forms

Although there are 13 forms in the database, only one of them is bound to a table - frm_merits. All of the other forms are either menus, with buttons that open other forms, or forms that capture information for use in queries.

Details of the merits themselves are entered in frm_merits (shown on the right). The Staff field is populated from the staff table, and the student population is populated from qry_student_names. The Date field has a default value of Now(), although Date() might be better if you don't want to store the time too.

[image: image30.png]SQL Statement : Query Builder =[Ol

Loy o

et (RPN =] cescrpion | pce

Table: [1bl_procict [1bl poduct [t producl
Sart

Show
Citeia

When you select a member of staff, the Subject combo is populated with the subjects that that member of staff teaches. This is done using the properties on the combo-box to show the subjects for the member of staff selected in the field above. Some code (shown right) has been added so that when the member of staff is changed, the list is re-populated (requeried).

The remainder of the code simply selects the top subject and disables the subject field if there is only one entry in the list.

Reports

The reports used in the system are all quite unremarkable. Then ones with unprinted in the name, together with rpt_reprints are used to print the merit sheets. They're essentially copies of the same report, just attached to different queries so that they print different things.

The remaining reports count and total the number of merits by department, tutor group, year, etc., as indicated by their name. Again, these are very similar, but are bound to different queries.

Macros

I'm not really a big fan of macros - they generally seem to be a long-winded way of something that you could do by just amending a bit of the VBA attached to buttons. All the macros in here are very simple, and they nearly all do the same thing.

If you call a macro AutoExec, then it will run automatically as the database is opened. In this database, all AutoExec does is open a form that acts as the main menu for the system.

All of the remaining macros do the same thing - they enable one button to perform two actions; something that could easily be done by editing the code. There's one macro for each type of merit printing report - the reports print all unprinted merits in a given category, and then the macro runs an update query to set the Printed field to Yes so that they're not printed again.

Stock Control

A common type of project is the stock control database, and the main problem in this type of system is keeping the stock levels up-to-date. You could use update queries, and one of the more popular A level textbooks proposes a method using VBA.

Both of these methods can lead to an integrity nightmare - you only need your function, query or macro to fail and your stock levels will be wrong - you won't have any idea how many items you have in stock.

I would question whether you need to store the current stock levels at all - they could be calculated from the number of items delivered and sold. Assuming that you start with an empty warehouse, the number of any item in stock will be the number delivered minus the number sold. If you don't start with no stock, or you need to adjust the stock levels, you could simply create dummy suppliers or customers and adjust them using deliveries or sales.

[image: image31.png]|7 Combo Box: product_ID

Fomet | e | Evert | Other | A1 |

Format
Decimal Places
Column Count
Column Heads
Column Widkhs
Lst Raws

List width
visble
Display When

=
z
:
:

[image: image32.png]& frm_order : Form

0etal

T T
Profuct poducL 1D

5

T
T

prcelauarti]

To calculate the number of items in stock, it's safest to use three queries - one to total the deliveries, one to total the sales, and one to subtract sales from deliveries. The first two are very similar - the query to count the deliveries is shown above.

The query uses the Sum() function to group and total the deliveries for each item. The purpose of the generated deliveries column is to use iif() to replace null values (i.e. blanks) with zeros, as you can't subtract from a blank.

Note also the arrow on the relationship - this indicates that the type of the relationship has been changed so that all records from tbl_stock are included (the middle option). This ensures that all stock items are included in the query results, rather than just the ones for which there are deliveries.

A similar query is created to total the sales, and then a third query is created to find the difference between the sales and deliveries – this is shown to the right.

This query is based on the first two queries - you will need to link the two "tables" yourself. A formula is then used to subtract the number of items sold from the number delivered, to give the current stock level.

Troubleshooting and Miscellaneous Tips

You May be at the End of a Record Set

If you create a form with the Data Entry property set to Yes, the best way to save a record is probably to add a button to your form, and use the wizard to get it to Add New Record. This error occurs when the record you are adding cannot be saved for some reason – usually for one of the following reasons:

· Referential integrity – there is no linked record for one of your fields, e.g. you are trying to enter a merit for a student or member of staff who isn’t in the database.

· Missing key fields – you haven’t entered all of the required information.

Converting Between Different Versions of Access

If you have Access 2000 at home, you can take your Access 97 databases home and Access 2000 will prompt you to convert it the first time you open it. After conversion, it should work without any problems, but you will need to convert it back to Access 97 format before you bring it back to school.

To do this, select the Convert Database option from the Database Utilities section of the Tools menu (in Access 2000), then choose To Prior Access Database Version…
Concatenating (Joining) Fields

Joining fields together can be a useful technique – the proper name for this is concatenation. It can be used, for example, to join together forenames and surnames to form a full name. You can join strings (e.g. text fields) together using the + or & operator in either a Control Source property or as a field name in a query. Remember that the fields will just be joined together as is – if you want a space between them, then you will need to put that in yourself.

For example, if you have surname and forename fields on a form, you could hide those (i.e. set the Visible property to No) and create a new unbound field with the control source:

=forename & “ “ & surname

The + operator will, of course, add together the values if you are using number fields. If you want to add a number field to a text field, or vice versa, you can convert field types using the val() or str$() functions. It is therefore better in most cases to use & - e.g. =forename & “ “ & surname rather than =forename + “ “ + surname, although the latter will work.

Date Queries Don’t Work

If you are having trouble with queries based on dates, and you can’t see anything wrong with them, then it’s worth checking the format of the date fields in the tables (i.e. not the form). If you use the default date style in the table, but set the form date field to Short Date, the minutes are stored in the table anyway, and when you search on dates, it uses the exact time too.

I Have Trouble Referring to Form Objects in Macros

It is very difficult to refer to form objects (e.g. fields, buttons, etc.) that have spaces in their names, although Access will let you include spaces. It is better to use underscores instead of spaces if you want a gap. Your macro also won’t work if the object name is a VBA keyword (i.e. command), so simple names such as Run and Next should be avoided. If you use the naming convention described on the next page, you shouldn’t run into this problem.

Help On-Line

If you’re at home, the examples mentioned in this booklet can be downloaded from the following web-site – http://www.advanced-ict.info

Leszynski/Reddick Naming Conventions

Level 1

	Object
	Tag
	Example

	Table
	tbl
	tbl_customer

	Query
	qry
	qry_clientname

	Form
	frm
	frm_customer

	Report
	rpt
	rpt_sales

	Macro
	mcr
	mcr_updatelist

	Module
	bas
	bas_isnotloaded

Level 2

	Object
	Tag
	Example

	Table
	tbl
	tbl_customer

	Table (lookup)
	tlkp
	tlkp_region

	Table (system)
	zstbl
	zstbl_user

	Query (select)
	qry
	qry_clientname

	Query (append)
	qapp
	qapp_newphone

	Query (crosstab)
	qxtb
	qxtb_yearsales

	Query (delete)
	qdel
	qdel_oldcases

	Query (form filter)
	qflt
	qflt_alphalist

	Query (lookup)
	qlkp
	qlkp_salary

	Query (make table)
	qmak
	qmak_saleto

	Query (system)
	zsqry
	zsqry_macroname

	Query (update)
	qupd
	qupd_discount

	Form
	frm
	frm_customer

	Form (dialogue)
	fdlg
	fdlg_inputdate

	Form (menu)
	fmnu
	fmnu_main

	Form (message)
	fmsg
	fmsg_checkdate

	Form (subform)
	fsub
	fsub_invoice

	Report
	rpt
	rpt_totals

	Report (subreport)
	rsub
	rsub_values

	Report (system)
	zsrpt
	zsrpt_macroname

	Macro
	mcr
	mcr_updatelist

	Macro (for form)
	m[formname]
	m[formname]_customer

	Macro (menu)
	mmnu
	mmnu_startform

	Macro (for report)
	m[rptname]
	m[rptname]_totals

	Macro (system)
	zsmcr
	zsmcr_loadlookup

	Module
	bas
	bas_timescreen

� EMBED Word.Picture.8 ���

Main Form

Subform

Field

[image: image33.png]Fornat | et | Evert | Other A1 |

Alow AutoCortact .. Yes A
vistle ez

Osplay When Aiways

Enabled Mo, 4
Locked ves

Fiter ook Oatabase Defat

Auto Tab o

Tabstop o

Tab Index. i

[image: image34.png]21|
Trumbers]| =] o

Concel
o

(8] = > <o mnd or et o] (O] _raste |

Help

Frm_customers

Tables BorderColor
1 Queries Corderineayie
Bordersyt
Forms Borderiidth
Loaded Forms CanGrow
Al Forms. | Canshrink
onrltype
Ciloyhen
enabid

= eventproceretic <

2

_1081924720.doc
[image: image1.png]tbl_depart
department
descrptions
heed

D
forename
vear
tutor_group

